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Abstract
Similarity reductions of the Hirota–Satsuma system and another gauge-related
system yield non-autonomous Hamiltonian systems with quartic potentials.
We present classes of special solutions and Bäcklund transformations which
are interpreted in terms of the action of an affine Weyl group on the space of
parameters. Some other quartic oscillators related to coupled Painlevé-type
equations are briefly considered. We show how separation of variables also has
an application in this context.

PACS number: 0230J

1. Introduction

Two-particle Hamiltonians with quartic potentials, of the form

H = 1
2 (p

2
1 + p2

2) + aq4
1 + bq2

1q
2
2 + cq4

2 (1.1)

are known to be integrable in only four non-trivial cases:

(a) a : b : c = 1 : 2 : 1;
(b) a : b : c = 1 : 12 : 16;
(c) a : b : c = 1 : 6 : 1;
(d) a : b : c = 1 : 6 : 8.

The complete integrability of such systems, and the extension of (1.1) to include extra terms
which preserve that property, has been considered from various points of view [1, 4, 16]. In
particular, the authors of [1] showed how cases (c) and (d) (with the inclusion of some extra
inverse square terms) could be derived as stationary flows of the Hirota–Satsuma system,

ut = 1
2u3x + 3uux − 6φφx φt = −φ3x − 3uφx (1.2)

and another coupled KdV system,

ft = −f3x − 3
2ffxx − 3

2f
2
x + 3

2f
2fx − 3fgx − 3gfx

gt = 1
4 (2g3x + 12ggx + 6fgxx + 12gfxx + 18fxgx − 6f 2gx

+3f4x + 3ff3x + 18fxfxx − 6f 2fxx − 6ff 2
x )

(1.3)
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respectively; both systems are associated with fourth-order Lax operators. This extended
the results of [6], where it was demonstrated that the integrable cases of the Hénon–Heiles
system arise as stationary flows of integrable partial differential equations (PDEs) obtained
from second- and third-order Lax operators.

The observation of this author in [8, 9] was that, by allowing scaling similarity reductions
of the PDEs instead of stationary flows, the same Hénon–Heiles systems are obtained but
with extra non-autonomous (time-dependent) terms appearing in the potential. The non-
autonomous systems are equivalent to certain fourth-order ordinary differential equations
(ODEs) of Painlevé type, which appear in a recent Painlevé classification of fourth- and
fifth-order equations in the polynomial class made by Cosgrove [2]. Below we consider
the scaling similarity reductions of (1.2) and (1.3), which (as outlined in [8]) yield non-
autonomous extensions of cases (c) and (d) Hamiltonian systems (1.1). Coupled Painlevé
equations corresponding to cases (a) and (b) are briefly discussed at the end, where we outline
an application of separation of variables to the non-autonomous version of case (a).

Our main results here are the Bäcklund transformations (BTs) for the non-autonomous
cases (c) and (d), and their interpretation in terms of the action of a subgroup of the affine
Weyl group of the root system A3 on the space of parameters. It turns out that for special
parameter values these coupled Painlevé equations can be solved in terms of the second Painlevé
transcendent PII. This was one of our motivations for studying these equations, since in his
recent work [2] Cosgrove has found a new fifth-order Painlevé-type equation in the polynomial
class, which also admits various particular solutions in terms of PII. This fifth-order equation
admits a first integral of fourth order but of third degree, and is conjectured to be related to the
Hirota–Satsuma system [3]. It is tempting to suggest that this fourth-order equation should
be equivalent to the coupled pair of ODEs (2.1) constructed below, but as yet this connection
remains elusive.

2. Coupled Painlevé equations

The scaling similarity solutions of (1.2) and (1.3) take the form

u(x, t) = (−t/3)−2/3U(z) φ(x, t) = (−t/3)−2/3�(z)

and

f (x, t) = (−t/3)−1/3F(z) g(x, t) = (−t/3)−2/3G(z)

where

z(x, t) = (−t/3)−1/3x.

The derivation of the ODEs for these scaling similarity variables is very similar to the case of
the stationary flows given in [1], so we omit the details here.

For the reduction of the Hirota–Satsuma system (1.2) we define new dependent variables
L1, L2 according to

U = L1 + L2 + z � = (L1 − L2)/2

and then we find that these variables satisfy the following coupled pair of second-order ODEs:

L1L
′′
1 − 1

2 (L
′
1)

2 + (L1 + 3L2 + 2z)L2
1 + 1

2�
2
1 = 0

L2L
′′
2 − 1

2 (L
′
2)

2 + (3L1 + L2 + 2z)L2
2 + 1

2�
2
2 = 0

(2.1)

(�1 and �2 are constants, and ′ denotes d
dz ). The system (2.1) takes the form of two copies of

the Painlevé equation P34 in Ince’s classification [12] coupled together, and indeed the system
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reduces to that equation in the special cases L1 = 0 = �1 or L2 = 0 = �2 (which are discussed
below).

For the scaling similarity reduction of the system (1.3) it is convenient to introduce the
dependent variable

E = −G − 1
2F

′ − 1
2F

2 + z

and then we find the following coupled system for the variables E,F :

EE′′ − 1
2 (E

′)2 − 2E3 − 3
2F

2E2 + 2zE2 + 1
2ν

2 = 0

F ′′ − 2F 3 − 3EF + 4zF − ξ = 0
(2.2)

(with ν and ξ being constants). The system (2.2) has the form of the second Painlevé equation
PII coupled to P34; for E = 0 = ν it reduces to PII, while for F = 0 = ξ it reduces to P34.

To make contact with the results of [1] for the stationary flows, we now present the
Hamiltonian form of these coupled systems. Introducing the coordinates q1, q2 and Q1,Q2

given by

L1 = q2
1 L2 = q2

2 E = 1
4Q

2
1 F = Q2

we find that (2.1) becomes

q ′′
1 +

1

2

(
q3

1 + 3q2
2q1

)
+ zq1 +

�2
1

4q3
1

= 0

q ′′
2 +

1

2

(
q3

2 + 3q2
1q2

)
+ zq2 +

�2
2

4q3
2

= 0

(2.3)

while (2.2) is equivalent to the system

Q′′
1 − 1

4
Q3

1 − 3

4
Q2

2Q1 + zQ1 +
4ν2

Q3
1

= 0

Q′′
2 − 2Q3

2 − 3
4Q

2
1Q2 + 4zQ2 − ξ = 0.

(2.4)

Just as in the autonomous case [1], both systems (2.3) and (2.4) are Lagrangian, and may be
derived from the Hamiltonians

h = 1

2
(p2

1 + p2
2) +

1

8
(q4

1 + 6q2
1q

2
2 + q4

2 ) +
1

2
z(q2

1 + q2
2 ) − 1

8

(
�2

1

q2
1

+
�2

2

q2
2

)

and

H = 1

2
(P 2

1 + P 2
2 ) − 1

16
(Q4

1 + 6Q2
1Q

2
2 + 8Q4

2) +
1

2
z(Q2

1 + 4Q2
2) − 2ν2

Q2
1

− ξQ2

respectively (where we have introduced the canonical conjugate momenta pj = q ′
j , Pj = Q′

j ,
j = 1, 2). The Hamiltonians h and H may be expressed as logarithmic derivatives of tau-
functions for these systems, but we shall not exploit this fact further here.

3. Bäcklund transformations

The key to finding the BTs for the systems (2.1) and (2.2) is to use the fact that the original
PDE systems (1.2) and (1.3) are connected by a gauge transformation, and are related by a
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Miura map to the same modified PDE. More precisely, the Hirota–Satsuma system may be
obtained from a fourth-order Lax operator which factorizes as

(∂ − v1)(∂ + v1)(∂ + v2)(∂ − v2) (3.1)

while the coupled PDE system (1.3) is obtained from the operator (∂+v1)(∂+v2)(∂−v2)(∂−v1);
each system of PDEs has a Miura map to the same modified PDE in the variables v1, v2 (this
is described explicitly in [1]). Writing the Lax pairs for these systems in matrix form yields
sl(4) Lax matrices, and under the scaling similarity reduction it is straightforward to find
isomonodromic Lax pairs for the systems (2.1) and (2.2), e.g. by the methods of [5]. The fact
that the Lax matrices lie in sl(4) suggests that the BTs for these systems should be understood
in terms of the action of a subgroup of the affine Weyl group of the root system A3.

In order to describe the BTs it is convenient to introduce auxiliary variables (corresponding
to the modified variables v1, v2 in the PDE setting) and rewrite the coupled second-order ODEs
as systems of first-order ODEs. The analogues of v1, v2 are

X1 = L′
1 + �1

2L1
X2 = L′

2 + �2

2L2
(3.2)

and with these new dependent variables we find that (2.1) is equivalent to the first-order system

X′
1 = − 1

2L1 − 3
2L2 − X2

1 − z

X′
2 = − 3

2L1 − 1
2L2 − X2

2 − z

L′
1 = 2L1X1 − �1

L′
2 = 2L2X2 − �2.

(3.3)

Similarly, by introducing extra variables J,K we are able to rewrite (2.2) as the first-order
system

J ′ = E + 3
4F

2 − J 2 − z

F ′ = −K − F 2 + 2z

E′ = 2EJ − ν

K ′ = (
2K − 3

4E
)
F − ξ + 2.

(3.4)

Our derivation of the BTs proceeds by making use of discrete symmetries and a one-to-
one correspondence between solutions of the systems (3.3) and (3.4), inherited from the gauge
relation between the original PDEs (1.2) and (1.3). The correspondence may be stated thus:
given a solution of (3.3) with parameters �1, �2, a corresponding solution of (3.4) is given by

J = − 1
2 (X1 + X2) F = X2 − X1

E = L1 + L2 + 2X1X2 + 2z K = L1 − L2 + 2X1(X2 − X1) + 2z
(3.5)

with the parameters related by

ξ = �1 − �2 ν = �1 + �2 − 2.

Conversely, a solution of (3.3) is obtained from a solution of (3.4) by the inverse relations

X1 = − 1
2F − J X2 = 1

2F − J

L1 = 1
2 (E + K) + 3

4F
2 + JF − J 2 − 2z L2 = 1

2 (E − K) − 1
4F

2 − JF − J 2.
(3.6)
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In the variables pj , qj and Pj ,Qj this correspondence defines the analogue of the canonical
transformation found in [1] for the autonomous case, so that the canonical 2-form is preserved
i.e.

∑
j=1,2 dpj ∧ dqj − dh ∧ dz = ∑

j=1,2 dPj ∧ dQj − dH ∧ dz.
Bearing this equivalence in mind it is sufficient to describe the action of the BTs on

the system (3.3), since this will induce corresponding transformations on the system (3.4).
Although the BTs are naturally described in terms of the affine Weyl group of A3, the space
of parameters (�1, �2) for the system (3.3) is only two dimensional, since the system derives
from a fourth-order Lax operator of the particular form (3.1). Thus we expect our parameter
space to be spanned by two simple roots in A3. It turns out that only the orthogonal roots α1

and α3 are relevant here, while the part of the Weyl group involving the root α2 is suppressed
(see, for example, [11] for the standard notation for root systems). With a convenient choice
of normalization we associate the root α1 with the point (2, 2) in the parameter space, while
α3 is associated with (−2, 2). The simplest BT is just the reflection in the α1 direction, which
corresponds to a trivial symmetry of the system (3.3):

Rα1 : (�1, �2) → (�2, �1) X1 ↔ X2 L1 ↔ L2. (3.7)

Another simple property of the system (3.3) is that given solutions L1, L2 to the second-
order system (2.1) (which depend only on the squares of the parameters �1, �2) we can define
alternative modified variables

X
†
1 = L′

1 − �1

2L1
X

†
2 = L′

2 − �2

2L2

and replace either X1 by X
†
1 or X2 by X

†
2, or both, in the first-order system (sending �1 → −�1

or �2 → −�2 where necessary). This yields two more BTs corresponding to reflections in the
α3 and α1 + α3 directions:

Rα3 : (�1, �2) → (−�2,−�1) X1 → X
†
2 = X2 − �2

L2

X2 → X
†
1 = X1 − �1

L1
L1 ↔ L2

Rα1+α3 : (�1, �2) → (−�1, �2) X1 → X
†
1 = X1 − �1

L1

X2 → X2 L1 → L1 L2 → L2.

By combining these three reflectional symmetries we see that a generic point in the parameter
space is connected to seven others, i.e. the points (±�1,±�2) and (±�2,±�1) are all connected
by these reflections.

Having described the reflectional symmetries, we can now present the appropriate affine
part of the Weyl group. In order to obtain a BT which induces a shift in the parameter space,
we make use of the correspondence with the system (3.4) together with a discrete symmetry of
that system, which may be described thus: given a solution (J, F,E,K) of the system (3.4)
for parameter values ν, ξ , a solution for parameters −ν,−ξ is given by

J † = J − ν

E
F † = −F E† = E K† = −K − 2F 2 + 4z. (3.8)

It is convenient to introduce the following quantities:

Ĵ = − 1
2 (X

†
1 + X

†
2) − ν(L1 + L2 + 2X†

1X
†
2 + 2z)−1 F̂ = X

†
2 − X

†
1

Ê = L1 + L2 + 2X†
1X

†
2 + 2z K̂ = L1 − L2 + 2X†

1(X
†
2 − X

†
1) + 2z.
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Combining the discrete symmetry (3.8) with the correspondence (3.5) and (3.6) we find the
BT for the system (3.3) equivalent to a shift in direction α1 in the parameter space:

Tα1 : (�1, �2) → (�1 + 2, �2 + 2) X1 → X1 = X
†
2 − (�1 + �2 + 2)

Ê

X2 → X2 = X
†
1 − (�1 + �2 + 2)

Ê

L1 → L1 = 1
2 (Ê − K̂) − 1

4 F̂
2 − Ĵ F̂ − Ĵ 2

L2 → L2 = 1
2 (Ê + K̂) + 3

4 F̂
2 + Ĵ F̂ − Ĵ 2 − 2z.

(3.9)

To express the inverse transformation it is convenient to use the quantities J †, F †, E†,K†

obtained from (3.8) via the correspondence (3.5), and define

L1 = 1
2 (E

† + K†) + 3
4F

†2 + J †F † − J †2 − 2z

L2 = 1
2 (E

† − K†) − 1
4F

†2 − J †F † − J †2.

Then the inverse of (3.9) may be given in the form

T−α1 : (�1, �2) → (�1 − 2, �2 − 2) X1 → X1 = −1

2
F † − J † +

(�1 − 2)

L1

X2 → X2 = 1

2
F † − J † +

(�2 − 2)

L2
L1 → L1 L2 → L2.

All possible BTs of the system (3.3) (and of the associated systems (2.1), (2.2) and (3.4))
should be obtained as combinations of the transformations presented above.

4. Special solutions

We have already remarked that the second-order systems (2.1) and (2.2) admit particular
solutions in terms of solutions of the equation P34 or PII (whose solutions are themselves related
by a one-to-one correspondence). By repeated application of the reflectional (R type) and
translational (T type) BTs described above we obtain parameter families of special solutions
to the system (3.3) on three families of lines in the (�1, �2) parameter space, denoted Lj ,
j = 1, 2, 3. Within each family Lj , every line is related to every other by combinations of
(3.7), (3.9) and the other symmetries.

The following families of lines are special:

• L1. Along the lines

�1 = 2n and �2 = 2n n ∈ Z

there is a three-parameter family of special solutions to the system (3.3). These are
obtained by starting from a point (�, 0) on the line �2 = 0 and taking the special solution

L1 = L L2 = 0 X1 = L′ + �

2L
X2 = Y

where L is a solution of the equation P34 in the form

LL′′ − 1
2 (L

′)2 + (L + 2z)L2 + 1
2�

2 = 0

and Y is a solution of the Riccati equation

Y ′ + Y 2 = − 3
2L − z.



Coupled Painlevé systems and quartic potentials 2241

(Note that (3.2) breaks down here.) The Riccati equation is linearized by the substitution
Y = (logψ)′, where ψ is a solution of the generalized Lamé equation

ψ ′′ + Vψ = 0 V = 3
2L + z

(with the usual elliptic potential replaced by a solution of P34). The solution of P34
depends on two arbitrary parameters, while the solution of the Riccati equation introduces
another parameter. Thus by application of the BTs to any such solution on the line �2 = 0
we obtain a three-parameter special solution at any point on the lines L1.

• L2. On the lines

�1 ± �2 = 4n n ∈ Z

there is a two-parameter family of special solutions, obtained by application of the BTs
to the special solution

L1 = L2 = L X1 = X2 = L′ + �

2L

at the point (�, �) on the line �1 − �2 = 0, where L satisfies P34 in the form

LL′′ − 1
2 (L

′)2 + (4L + 2z)L2 +
1

2
�2 = 0.

It is interesting to observe that the application of the BT (3.9) to the special solutions on
this line is equivalent to two applications of the standard BT for P34 (� → � + 2), with
the quantity Ê being a solution of P34 at the intermediate parameter value (� + 1).

• L3. On the lines

�1 ± �2 = 2(2n + 1) n ∈ Z

there is a three-parameter family of special solutions, generated by application of the BTs
to a special solution of the system (3.3) at a point (�, 2 − �) on the line �1 + �2 = 2. This
special solution is obtained from the E = 0 = ν solution of the system (2.2), taking

L1 = 1
2K + 3

4F
2 + JF − J 2 − 2z

L2 = − 1
2K − 1

4F
2 − JF − J 2

X1,2 = ∓ 1
2F − J

with F a solution of the equation PII in the form

F ′′ − 2F 3 + 4zF − 2� + 2 = 0

the quantity K is given by

K = −F ′ − F 2 + 2z

while J is a solution of the Riccati equation

J ′ + J 2 = 3
4F

2 − z.

(Once again the Riccati equation is solved in terms of a generalized Lamé equation.) Note
that although the translational BT T−α1 is not well defined for E = 0 = ν, because the
expression (3.8) for J † breaks down, it may be applied consistently by setting J † = J in
this case.
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Apart from these special solutions, the general solution of the system (3.3) may be obtained
at the points

�1 + �2 = 4 m �1 − �2 = 4n (m, n) ∈ Z
2

(i.e. the intersection points of the lines L2) in terms of two copies of the equation PII. To see this
we start from the point (0, 0) in the parameter space and consider the Newton equations (2.3)
for the Hamiltonian h. If we take the same separation variables λ+, λ− as in the autonomous
case, so that λ± = 1

2 (q1 ± q2), then these variables satisfy the decoupled equations

λ′′
± + 2λ3

± + zλ± = 0.

Thus we see that λ+, λ− are just two independent solutions of the equation PII with zero
parameter, and the general solution of (3.3) at (0, 0) is given by

L1 = (λ+ + λ−)2 L2 = (λ+ − λ−)2 X1 = λ′
+ + λ′

−
λ+ + λ−

X2 = λ′
+ − λ′

−
λ+ − λ−

.

The formulae for the Xj break down in the special cases λ+ = ±λ−, when these variables
are found by solving a Riccati equation. The existence of these special solutions is strongly
suggestive of a connection with the fifth-order equation Fif-IV in Cosgrove’s classification [2].

We also note that, as a particular case of the special solutions on the lines L2, rational
solutions of (3.3) may be found at the points (�1, �2) = (2(m + n) ± 1

2 , 2(m − n) ± 1
2 ) for

(m, n) ∈ Z
2, by applying the BTs to the known rational solutions of P34. At the points where

the families of lines Lj intersect there are also particular solutions expressed as mixtures of
rational and Airy functions and their derivatives.

5. More coupled Painlevé equations

The case (a) and (b) Hamiltonians (1.1) also have non-autonomous extensions, equivalent to
coupled pairs of Painlevé equations. For case (a) consider the system

AA′′ − 1
2 (A

′)2 − 2(2 A + 2B + z + a)A2 + 1
2α

2 = 0

BB ′′ − 1
2 (B

′)2 − 2(2 A + 2B + z + b)B2 + 1
2β

2 = 0
(5.1)

where a, b, α, β are parameters. Observe that this system has special solutions in terms of P34
when A = 0 = α or B = 0 = β. If we make a change of variables

A = q2
1 B = q2

2

then it is straightforward to see that the equations for the coordinates q1, q2 are generated by
the Hamiltonian

H = 1

2
(p2

1 + p2
2) − 1

2
(q2

1 + q2
2 )

2 − 1

2
(z + a)q2

1 − 1

2
(z + b)q2

2 − 1

8

(
α2

q2
1

+
β2

q2
2

)
(5.2)

and thus we see that (5.1) is just equivalent to a non-autonomous two-particle Garnier system.
In the special case a = b = α = β = 0 this system has appeared as a double-scaling limit of
a Hermitian matrix model with a double-well φ4 potential [15].

Another coupled Painlevé system,

LL′′ − 1
2 (L

′)2 + 2
(
L − 3

4M
2 + 2kM + 2z − 4k2

)
L2 + 1

2�
2 = 0

M ′′ − 2M3 + 6LM − 8kL + 8zM + m = 0
(5.3)
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with parameters k, �,m, may be obtained as a scaling similarity reduction of a higher-order
member of the classical Boussinesq hierarchy (see, e.g., [7] for details of this hierarchy). Since
the classical Boussinesq equation has a scaling similarity reduction to the fourth Painlevé
transcendent PIV, the system (5.3) may naturally be considered as the next member in a PIV
hierarchy (for a description of some ODE hierarchies see, e.g., [9, 14]). Note that forL = 0 = �

it has solutions in terms of PII, while for M = 0 = m it has solutions in terms of P34. If we
set

L = − 1
8Q

2
1 M = Q2

then the Newton equations for the coordinates Q1,Q2 are generated by the Hamiltonian

H = 1
2 (P

2
1 + P 2

2 ) − 1
32 (Q

4
1 + 12Q2

1Q
2
2 + 16Q4

2) + kQ2
1Q2

+(z − 2k2)Q2
1 + 4zQ2

2 − 8�2

Q2
1

+ mQ2

which is a non-autonomous extension of the case (b) Hamiltonian (1.1).
We have seen in the previous section that separation variables can be used to obtain special

solutions even in the non-autonomous case, but they have other uses. As an example consider
the non-autonomous Garnier system with Hamiltonian (5.2), which can be expressed as a sum
of two Poisson commuting quantities:

H = Ha + Hb {Ha,Hb} = 0

Ha = J
(a − b)

+
1

2
p2

1 − 1

2
q4

1 +
b

(a − b)
q2

1q
2
2 − 1

2
(z + a)q2

1 − α2

8q2
1

Hb = J
(b − a)

+
1

2
p2

2 − 1

2
q4

2 +
a

(b − a)
q2

1q
2
2 − 1

2
(z + b)q2

2 − β2

8q2
2

J = 1

2
(p1q2 − p2q1)

2 − 1

2
(a + b)q2

1q
2
2 +

1

8

(
α2q2

2

q2
1

+
β2q2

1

q2
2

)
.

Since Ha and Hb both commute with the Hamiltonian we see immediately that

H ′
a = − 1

2q
2
1 H ′

b = − 1
2q

2
2 . (5.4)

The separation variables (elliptic coordinates) λ± are given by the zeros of

P(ζ ) = q2
1

(ζ − a)
+

q2
2

(ζ − b)
− 1

so from P(λ±) = 0 we have

q2
1 = (b − a)−1(λ+ − a)(λ− − a) q2

2 = (a − b)−1(λ+ − b)(λ− − b).

Introducing a generating function G(pj , λ±) we find the conjugate momentum variables µ±
from

G = p1

√
(λ+ − a)(λ− − a)

(b − a)
+ p2

√
(λ+ − b)(λ− − b)

(a − b)
µ± = ∂G

∂λ±
.

It is then straightforward to show that

µ2
± = λ±

4
+

z

4
+

Ha

2(λ± − a)
+

Hb

2(λ± − b)
+

α2

16(λ± − a)2
+

β2

16(λ± − b)2
=: R±. (5.5)
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The above expression for µ± is the analogue of the spectral equation in the autonomous case,
but here the spectral curve is not fixed since its coefficients vary with z; explicitly from (5.4)
we have

Ha(z) = 1

2

∫ z

(a − b)−1(λ+(y) − a)(λ−(y) − a) dy

and similarly for Hb(z). Deformations of spectral curves have been used by several different
authors to describe asymptotics of non-autonomous equations by the use of Whitham averaging
or WKB-type methods (see [17] for a review). Instead we use the spectral equation (5.5) to
derive an exact integral equation for the separation variables λ±. From the expression for H

in the elliptic coordinates we find

λ′
± = ∂H

∂µ±
= 4(λ± − a)(λ± − b)µ±

(λ∓ − λ±)

which leads to a coupled integral equation for the vector λ = (λ+, λ−)T :

λ(z) =
(

I+[λ](z)
I−[λ](z)

)
=: I [λ](z)

with

I±[λ](z) = 4
∫ z

z0

(λ±(s) − a)(λ±(s) − b)

(λ∓(s) − λ±(s))

√
R±(s) ds.

If the solution of (5.1) has a singularity at z = z0, then locally (up to the symmetry
λ+ ↔ λ−) the separation variables behave like

λ+ ∼ 1

(z − z0)2
λ− → c z → z0

for some constant c. In that case (e.g. by introducing a new variable v = λ+
−1/2 analytic

at z0), in the neighbourhood of the singularity the operator I [λ] can be converted into an
integral operator defining a contraction mapping on a complete space of analytic functions,
whose unique fixed point corresponds precisely to the solution of (5.1). Integral operators of
this type were an important element in the direct proof [13] of the Painlevé property for the
Painlevé equations PI–VI. The essential new feature here is that to treat higher-order equations
or systems like (5.1) it is necessary to consider operators on vectors of analytic functions (i.e.
with components v, λ− in this case). A more detailed discussion of these integral operators
will be given elsewhere [10].
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